Euklidische Distanz • Definition und Berechnung (2024)

Video anzeigen

zur Videoseite: Euklidische Distanz

In diesem Beitrag erfährst du, wie du mit Hilfe der euklidischen Distanz den Abstand zweier Punkte oder Vektoren in einem Koordinatensystem berechnen kannst. Neben der allgemeinen Formel des euklidischen Abstandes findest du im Artikel Rechenbeispiele und eine Einordnung der euklidischen Metrik.

Wenn du nach einem kurzen und anschaulichen Erklärvideozum Thema euklidische Distanz suchst, dann bist du hier genau richtig.

Inhaltsübersicht

Euklidische Distanz Definition

im Videozur Stelle im Video springen

(00:11)

Die euklidischen Distanz ist eine Metrik bzw. Abstandsfunktion und entstammt der euklidischen Geometrie. Wenn wir zwei Punkte auf einer Ebene oder im dreidimensionalen Raum durch eine Gerade miteinander verbinden, dann ist die euklidische Distanz nichts anderes als die Länge dieser Geraden zwischen den beiden Punkten.In Räumen ab vier Dimensionen ist eine anschauliche Messung nicht mehr möglich. Die allgemeine Form des euklidischen Abstands gilt jedoch weiterhin.

Formaler ausgedrückt entspricht die euklidische Distanz der Länge oder auch dem Betrag des Verbindungsvektors zweier Punkte oder Vektoren. Sie ist daher gleichbedeutend mit der euklidischen Norm dieses verbindenden Vektors. Andere Bezeichnungen für die euklidische Distanz sind euklidischer Abstand oder euklidische Metrik.

Eindimensionaler Fall

Existiert nur eine Achse auf der alle Punkte eines Raums liegen, dann entspricht der Abstand zweier Punkte dem absoluten Differenzwert ihrer Koordinaten. Die euklidische Distanz der Punkte Euklidische Distanz • Definition und Berechnung (1) und Euklidische Distanz • Definition und Berechnung (2) ist daher in einem eindimensionalen Raum (Euklidische Distanz • Definition und Berechnung (3)) die einfache numerische Differenz ihrer jeweiligen Koordinaten auf dieser Achse.

Euklidische Distanz • Definition und Berechnung (4)

Zweidimensionaler Fall

im Videozur Stelle im Video springen

(00:40)

Im zweidimensionalen Raum (Euklidische Distanz • Definition und Berechnung (5)) entspricht die Berechnung des euklidischen Abstandes dem Satz des Pythagoras. Zwischen den beiden betrachteten Punkten Euklidische Distanz • Definition und Berechnung (6) und Euklidische Distanz • Definition und Berechnung (7) lässt sich ein rechtwinkliges Dreieck aufspannen, dessen Katheten jeweils parallel zu den Achsen verlaufen. Die Hypothenuse dieses Dreiecks ist dabei der gesuchte Abstand zwischen den Punkten den wir mit Hilfe einer Dreiecksgleichung bestimmen können. Wir ziehen also die Koordinatenwerte der Punkte voneinander ab, quadrieren diese Differenzen und bilden die Summe der beiden Quadrate. Das Ergebnis dieser Rechenschritte ist dann der quadratische Abstand der Punkte. Ziehen wir jetzt noch die Wurzel, wird deutlich, dass es sich um die allgemeine Formel der euklidischen Distanz für Euklidische Distanz • Definition und Berechnung (8) handelt.

Euklidische Distanz • Definition und Berechnung (9)

Euklidische Distanz • Definition und Berechnung (10)

Euklidische Distanz • Definition und Berechnung (11)

direkt ins Video springen

Ein zweiter Berechnungsweg des Abstandes erfolgt über den Betrag des Verbindungsvektors der beiden Punkte. Um diesen zu bestimmen, zieht man die Vektoren Euklidische Distanz • Definition und Berechnung (12) und Euklidische Distanz • Definition und Berechnung (13), die vom Ursprung zu den Punkten P und Q zeigen, voneinander ab und bildet die euklidische Norm dieses Differenzvektors. Auch hierbei ergibt sich letztendlich die Formel der euklidischen Metrik für Euklidische Distanz • Definition und Berechnung (14).

Euklidische Distanz • Definition und Berechnung (15)

Euklidische Distanz • Definition und Berechnung (16)

direkt ins Video springen

Beispiel: Der euklidische Abstand der Punkte Euklidische Distanz • Definition und Berechnung (17) und Euklidische Distanz • Definition und Berechnung (18) bzw. der Vektoren Euklidische Distanz • Definition und Berechnung (19) und Euklidische Distanz • Definition und Berechnung (20) beträgt Euklidische Distanz • Definition und Berechnung (21).

Euklidische Distanz • Definition und Berechnung (22)

Dreidimensionaler Fall

im Videozur Stelle im Video springen

(02:01)

Im dreidimensionalen Raum (Euklidische Distanz • Definition und Berechnung (23)) lässt sich die euklidische Distanz folgendermaßen berechnen:

Euklidische Distanz • Definition und Berechnung (24)

Das Prinzip ist also dasselbe wie bei der zweidimensionalen Ebene. Wir müssen einfach die dritte Dimension mit berücksichtigen.

Beispiel: Der euklidische Abstand der Punkte Euklidische Distanz • Definition und Berechnung (25) und Euklidische Distanz • Definition und Berechnung (26) ist Euklidische Distanz • Definition und Berechnung (27).

Euklidische Distanz • Definition und Berechnung (28)

Allgemeine Form des euklidischen Abstandes

im Videozur Stelle im Video springen

(02:52)

Auch in noch höheren Dimensionen bleibt das Schema zur Berechnung der euklidischen Distanz gleich. In einem n-dimensionalen Raum Euklidische Distanz • Definition und Berechnung (29) ergibt sich damit der Abstand zwischen den Punkten Euklidische Distanz • Definition und Berechnung (30) und Euklidische Distanz • Definition und Berechnung (31) zu:

Euklidische Distanz • Definition und Berechnung (32)

Euklidische Distanz berechnen

Gegeben sind die Punkte E (5, 4, 6) und F (7, 3, 8) sowie die zugehörigen Vektoren Euklidische Distanz • Definition und Berechnung (33) und Euklidische Distanz • Definition und Berechnung (34). Um die euklidische Distanz zwischen den beiden Punkten zu bestimmen, wenden wir nacheinander beide Methoden ein, die wir kennen gelernt haben:

Einsetzen der Koordinaten:

Euklidische Distanz • Definition und Berechnung (35)

Betrag des Verbindungsvektors:

Euklidische Distanz • Definition und Berechnung (36)

Euklidische Distanz • Definition und Berechnung (37)

Einordnung der euklidischen Metrik

im Videozur Stelle im Video springen

(03:05)

Als Metrik werden Abstandsfunktionen bezeichnet, die jedem Elementenpaar einer Menge einen Abstand zuweisen und diese dadurch als metrischen Raum definieren. Eine Metrik muss bestimmte Eigenschaften erfüllen:

  • die Distanz eines Punktes zu sich selbst ist Null
  • der Abstand zwischen zwei Punkten ist positiv
  • die Distanz von A zu B ist die selbe wie die von B nach A
  • der direkte Weg von A nach B ist kürzer oder gleich lang wie die Distanz von A nach B über einen weiteren Punkt C

Alle diese Voraussetzungen erfüllt die euklidische Metrik. Der metrische Raum oder die durch die euklidische Distanz definierte Menge von Elementen heißt daher euklidischer Raum.

Neben der euklidischen Distanz existieren viele weitere Abstandsmaße, wie zum Beispiel:

  • Diskrete Metrik:
    Diese Abstandsfunktion bestimmt alle Distanzen zwischen nicht identischen Punkten als 1.
    Euklidische Distanz • Definition und Berechnung (38) ist Euklidische Distanz • Definition und Berechnung (39), sonst Euklidische Distanz • Definition und Berechnung (40)
  • Manhattan-Distanz (auch Taxi-Metrik):
    Die Manhattan-Metrik weist allen Distanzen zwischen zwei Punkten die Summe der absoluten Differenzen ihrer Einzelkoordinaten zu. Wege zwischen Elementen ähneln hier den kürzesten Strecken, die ein Taxifahrer im Straßengitter New Yorks zurücklegt.
    Euklidische Distanz • Definition und Berechnung (41)
  • Tschebyschew-Norm (auch Schachbrett-Distanz):
    Die Abstände zwischen zwei Punkten entsprechen der Anzahl an Zügen, die ein König auf einem Schachbrett benötigen würde, um von einem zum anderen zu rücken. Die Seitenlängen eines einzelnen Feldes sind dabei als 1 definiert.
    Euklidische Distanz • Definition und Berechnung (42)

Beliebte Inhalte aus dem BereichGeometrie

  • Dreidimensionales KoordinatensystemDauer:03:32
  • Abstand zweier PunkteDauer:04:18
  • Abstand Punkt GeradeDauer:03:21

Weitere Inhalte:Geometrie

Abstandsrechnung

Euklidische DistanzDauer:04:03
Dreidimensionales KoordinatensystemDauer:03:32
Abstand zweier PunkteDauer:04:18
Abstand Punkt GeradeDauer:03:21
Lagebeziehungen von GeradenDauer:04:40
Abstand Gerade GeradeDauer:04:53
Abstand Punkt EbeneDauer:04:15
Abstand Gerade EbeneDauer:04:20
LotfußpunktverfahrenDauer:05:21
Abstand windschiefer GeradenDauer:04:57
Euklidische Distanz • Definition und Berechnung (2024)

FAQs

Euklidische Distanz • Definition und Berechnung? ›

Die euklidische Distanz zwischen zwei Vektoren a und b erhält man, indem man die Differenz zwischen den beiden Vektoren bildet und anschließend deren Länge bzw. euklidische Norm berechnet. Alternative Begriffe: Abstand zwischen zwei Punkten, Abstand zwischen zwei Vektoren, Euklidischer Abstand.

Wie berechnet man eine Distanz aus? ›

Die Entfernung von zwei Punkten bestimmt man entweder über die Entfernungsformel: Abstand = Wurzel aus ((x2–x1)^2+(y2–y1 )^2) oder man zeichnet ein Steigungsdreieck ein und kann dann über Pythagoras die gewünschte Streckenlänge berechnen.

Ist die quadrierte euklidische Entfernung eine Metrik? ›

“Quadrierte Euklidische Distanz” ist nicht metrisch!

Wie wird Abstand berechnet? ›

1: Mindestabstand berechnen mit Hilfe von Leitpfosten. Faustformel: Für den Sicherheitsabstand außerorts sollte der Abstand zu Lkw und Autos beispielsweise bei 100 km/h 50 Meter betragen – das ist die Hälfte des Tachostandes in Metern. Beispiele: Wer 70 km/h fährt, muss 35 Meter Mindestabstand halten.

Top Articles
Latest Posts
Article information

Author: Carmelo Roob

Last Updated:

Views: 6432

Rating: 4.4 / 5 (65 voted)

Reviews: 80% of readers found this page helpful

Author information

Name: Carmelo Roob

Birthday: 1995-01-09

Address: Apt. 915 481 Sipes Cliff, New Gonzalobury, CO 80176

Phone: +6773780339780

Job: Sales Executive

Hobby: Gaming, Jogging, Rugby, Video gaming, Handball, Ice skating, Web surfing

Introduction: My name is Carmelo Roob, I am a modern, handsome, delightful, comfortable, attractive, vast, good person who loves writing and wants to share my knowledge and understanding with you.